Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(5): e0042123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37074184

RESUMO

The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial Lactococcus strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the Skunavirus genus, 2% to the P335 group, and 1% to the Ceduovirus genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that Skunavirus phages exhibited a very narrow host range, whereas some Ceduovirus and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. IMPORTANCE Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the Skunavirus genus were by far the most dominant. Most phages lysed a small subset of the Lactococcus strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.


Assuntos
Bacteriófagos , Queijo , Lactococcus lactis , Siphoviridae , Humanos , Queijo/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Estudos Longitudinais , Canadá , Lactococcus lactis/genética , Siphoviridae/genética , Reação em Cadeia da Polimerase Multiplex
2.
Appl Environ Microbiol ; 78(24): 8719-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042172

RESUMO

We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Genoma Viral , Lactobacillus plantarum/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/fisiologia , Composição de Bases , Genes Virais , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Homologia de Sequência , Silagem/virologia , Sintenia , Ligação Viral , Zea mays/virologia
3.
Microb Cell Fact ; 10 Suppl 1: S20, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21995802

RESUMO

Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed.


Assuntos
Bacteriófagos/isolamento & purificação , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Lactobacillales/virologia , Leite/metabolismo , Leite/microbiologia , Animais , Bacteriófagos/metabolismo , Biotecnologia , Bovinos , Laticínios , Fermentação , Microbiologia de Alimentos , Humanos , Leite/virologia
4.
Nature ; 468(7320): 67-71, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21048762

RESUMO

Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.


Assuntos
Bacteriófagos/genética , DNA Viral/metabolismo , Loci Gênicos/genética , Loci Gênicos/imunologia , Plasmídeos/metabolismo , Streptococcus thermophilus/imunologia , Streptococcus thermophilus/virologia , Bacteriófagos/metabolismo , Sequência de Bases , DNA Intergênico/genética , DNA Intergênico/metabolismo , DNA Viral/genética , Farmacorresistência Bacteriana/genética , Sequências Repetitivas Dispersas/genética , Dados de Sequência Molecular , Mutação , Plasmídeos/genética , RNA Bacteriano/genética , RNA Bacteriano/imunologia , Streptococcus thermophilus/genética
5.
Annu Rev Microbiol ; 64: 475-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20528693

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins is a widespread system across bacteria and archaea that causes interference against foreign nucleic acids. The CRISPR/Cas system acts in at least two general stages: the adaptation stage, where the cell acquires new spacer sequences derived from foreign DNA, and the interference stage, which uses the recently acquired spacers to target and cleave invasive nucleic acid. The CRISPR/Cas system participates in a constant evolutionary battle between phages and bacteria through addition or deletion of spacers in host cells and mutations or deletion in phage genomes. This review describes the recent progress made in this fast-expanding field.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/genética , Interações Hospedeiro-Parasita , Recombinação Genética , Bactérias/genética , Sequências Repetidas Invertidas , Mutagênese Insercional , Deleção de Sequência
6.
Virology ; 373(2): 298-309, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18191977

RESUMO

The virulent lactococcal phage 1706, isolated in 1995 from a failed cheese production in France, represents a new lactococcal phage species of the Siphoviridae family. This phage has a burst size of 160 and a latent period of 85 min. Its linear double-stranded DNA genome was composed of 55,597 bp with a 33.7% G+C content. Its deduced proteome (76 ORFs) shared limited similarities to other known phage proteins. SDS-PAGE coupled with LC-MS/MS analyses led to the identification of 15 structural proteins. The most striking feature of the 1706 proteome was that 22 ORFs shared similarities with proteins deduced from the genome of either Ruminococcus torques and/or Clostridium leptum. Both are Firmicutes bacteria found in the gut flora of humans. We also identified a four-gene module in phage 1706, most likely involved in host recognition that shared similarities with lactococcal prophages. We propose that the virulent phage 1706 infected another bacterial genus before picking up a lactococcal host recognition module.


Assuntos
Lactococcus lactis/virologia , Siphoviridae/patogenicidade , Sequência de Aminoácidos , Sequência de Bases , DNA Viral/genética , Genoma Viral , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Prófagos/genética , Prófagos/fisiologia , Proteoma , Siphoviridae/genética , Siphoviridae/fisiologia , Siphoviridae/ultraestrutura , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/isolamento & purificação , Virulência
7.
J Bacteriol ; 190(4): 1390-400, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065545

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.


Assuntos
DNA Intergênico/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética , Sequência de Bases , DNA Bacteriano/genética , DNA Viral/genética , Genoma Bacteriano/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Fagos de Streptococcus/fisiologia , Streptococcus thermophilus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...